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Abstract. A comparative study is presented on quanmm hansports in weakly opened circle 
and stldium billiards in the perpendicular magnetic field B .  While in the circle the magneb- 
conductance g ( B )  shows grossly regular oscillations. in the stadium it exhibits a transition 
from mild to violent undulations with increase of B.  The rich fluctuation features of g(B). 
chvacterired by gmdients of the cusp-like cenval peaks in autocorrelation functions, are 
attributed lo the stability and instability of phase space in the underlying classical dynamics. 

1. Introduction 

Recent progress in fabrication of nanoscale or mesoscopic structures has formed a bridge 
between high technology and fundamental researches of nonlinear dynamics [I]. Both 
concave and convex billiards, around which studies of chaos are being accumulated, can 
be fabricated at the interface layer of semiconductor heterojunctions, e.g. GaAdAIGaAs. 
Striking experiments by Marcus et al [2] indicated a crossover from aperiodic to periodic 
fluctuations of conductances in an open stadium billiard in a magnetic field. 

Among concave billiards, the Bunimovichs stadium billiard has received a wide 
attention as a paradigm of nonlinear dynamics [3]. It belongs to the fully chaotic K 
system and, together with the kicked rotator, constitutes a prototype of conservative chaotic 
systems. Its quantum-mechanical study showed GOE level statistics [4] and periodic-orbit 
scars in wavefunctions (51, thereby heralding a new era of quantum chaos [61. In the 
presence of a perpendicular magnetic field, the stadium billard becomes a generic system. 
Meplan er al 's  treatment [7] elucidated its characteristic classical features: the erratic and 
ergodic phase space in a low field region is replaced by KAM tori via transitional unstable 
regions with increase of the field strength, in contrast to the circle billiard where the phase 
space is always occupied by periodic and non-ergodic orbits. 

A11 these theoretical treatments, however, have been limited to a closed system without 
any leaky region and, with a few exceptions, little attention has been given to corresponding 
studies on its open-system version. Some prior works deserve mention: Jalabert et al's 
works [SI include a study on open stadium billiards. Their openings are, however, made by 
suppressing the complete line segments of closed stadium and thus there is no way to bridge 
integrable circle and fully chaotic stadium by tuning the aspect ratio. Further, although both 
the semiclassical theory and the tight-binding calculations with Peierls' substitution are 
presented by this group, the former cannot incorporate the effect of diffraction at holes of 
billiards, and the latter spoils the salient aspect of the non-separability in non-integrable and 
chaotic systems. A recent paper by Wang et al [91 treated the open stadium with the same 
wire geometry as in (21. They scrutinized, however, nothing about the quantum analogue of 
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the transition from chaos to tori. Since they concentrated on a strongly opened case where 
the incident electron escapes to wires without significant collisions with the wall, it is not 
feasible to address the transition to be uncovered below by us. To our knowledge, therefore, 
the difference between magneto-conductances in weakly opened circle and stadium billiards 
is far from obvious. 

In this paper, we present quantum and classical theories on the transports in open 
concave billiards in a perpendicular magnetic field. A pair of semi-infinite lead wires j = 1 
and 2 are joined to the leaky holes of the billiard on its right and left sides, respectively 
(see figure l(b)). (Although this wire geometry is different from that in [ Z ] ,  qualitative 
features of the magneto-conductance do not depend on it. The wire geometry in this paper 
was also used in [lo].) This open system is characterized by a,  b and d for semicircle 
radius, line segment length and width of holes at x = aj = (-1)ja'. respectively, taking 
the origin at the centre of the billiards. Note a' = b/2 + (a2 - ~ f ~ / 4 ) ' / ~ .  We shall choose 
the stadium with b = 2a when the maximum Lyapunov exponent is available [3] and the 
circle with b = 0, while keeping fixed the area of the billiard A(= r a z  + 2ab) and the 
degree of opening d/d'/z = 0.1497 common to both types. (In this case, d/(2a) = 0.2 
and 0.1327 for the stadium and circle, respectively.) This degree corresponds to a weakly 
opened situation suitable to uncover the ample fluctuation properties of quantum transport. 
We shall be concerned with tuning the strength of the magnetic field. For convenience, 
the circle and stadium will be abbreviated as CI and Sd, respectively. The region inside 
the billiard wall and within 1x1 c a' will be prescribed as the cavity region. Nonlinear 
dynamics of electrons in this region will have a very significant effect on the S-matrix and 
quantum transports, and our major interest lies in this effect. 

2. Quantum-mechanical treatment 

For brevity, suppose the field B applies only to the cavity region, with no field in the 
wire regions. The essential quantities are cyclotron frequency and magnetic length given 
by w = e B / m  and I ,  = @/(&))In, respectively. We choose the gauge potential in 
the Landau gauge, A = (0, - E x ,  0). which continuously changes to the constant value 
A = (0, -Bai. 0)  at the wires. 

For an electron with the Fermi energy E = ( h k ~ ) ~ / Z m ,  the wavefunction q satisfies 
the Schrodinger equation 

(2m)-][-&V + e A ( ~ ) ] * l v ( r )  = E W ( r ) .  (1) 

For the incident propagating mode n at the wire 1, "(7)  at wires j = 1 and 2 is written in 
terms of the S-matrix [S::] as 

W ( x ,  y ;  n) = exp[ik,,(x - aj ) ]&(y)  

M 
+ S~~exp[(ieBa~/E)y~exp[(-l)'ik,(x - aj)l@"(y) 

m=l 

with the transverse component 
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Figure 1. Contour mp for wavefunctions IQ1 in ihe case of complete transmission: (a) circle 
with BIB0 = 12.2604: (b)  stadium with BIB" = 12.6489. 

Here the wavevector is defined by k = (km, mx/d) with mn/d and k,,, = [kz - (m~r/d)*] ' /~  
for the transverse and longitudinal components, respectively. Modes m for m < N and for 
m > N with N = [ k ~ d / n ]  correspond to propagating and evanescent waves, respectively. 

In the cavity region, on the other hand, the Green function is given by [ I I ,  121 

~ ( r ,  T';  E )  = (-mn/(znh*))(exp[i(x'y - xy' + xy - x'y')/2&1 

X [(COSIIE)r(E + l / ~ ) l - l ~ c . O ( Z ) / Z 1 / z  (4) 

where & = ( E  + iS)/hw is a scaled energy and We,0  is the Whittaker function of 

To determine the values for S-matrix, we exploit Green's theorem which yields an 
z(= IT - T'lz/(zl :)).  

equation including integrations along the closed boundary C of the cavity region: 

- 2 g P i  G ( r ,  r')A(T') . n ' @ ( ~ ' )  dS' (5) 

where r and r' lie on C and a/an' means outward-normal derivative. P and @(r) denote 
Cauchy's principal value and the interior angle at r, respectively. 
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We shall here apply the boundary element method: the boundary of the cavity region 
is approximated by a sequence of small line segments. Then functions in the integrand 
along each integration segment in (5)  are approximated by their linear interpolations: for a 
segment connecting T; and ?-it), for instance, 

~ ( 0  Fi(t)Ti + FZQ)Titl 

Y ( T ( ~ ) )  = F i ( 0 Q ;  + F z ( O q i + i  ( 6 d  

aur(r(%))/an' = Fi($)arYilad + Fz(t)aqi t l /an '  

where 

FIE) = (1 - t) /2 FzQ) = (1 + t ) / 2  (W 

with -1 < 
(6) into (9, we have 

< 1. Substituting G(T,T' :  E )  in (4), its normal derivative and expressions in 

wherc C, P and Q are numerical coefficients and the boundary condition r N t l  = T I  is 
imposed. Among unknown variables W and a$/an', W = 0 is satisfied at the wall, and W 
and a$/an' at the holes j = 1 and 2 are rewritlen in terms of S-matrix as 

M 

ary%;, y ;  n)/an' = -ikIA,l&(y) - ~ ~ ~ ( - l ) j ( i k m ) e x p ( ( i e B a ~ ~ ) y ] ~ m ( y ) .  (8b) 

Using these notions in (7). we eventually obtain a set of linear equations for unknown 
variables S ( ' ) ,  S(') and a*/an'lWdl, whose solutions lead to the flux-normalized transmission 
coefficient t,, = (km/kn)'/'S:; and the magneto-conductance 

m=I 

Similarly, wavefunctions are available by substituting the solution for SG) and 
a$/an'l,dl into (5) with T taken inside the cavity region together with a new choice 
S ( T )  = 2n. 

3. Numerical results 

We concentrate on a single-mode ( N  = 1)  injection by choosing kFd/n = 1.2. Taking 
Bo = (h/e)/d as a unit of the magnetic field, the scaled magnetic field BIB0 will be 
varied between 1.72 and 27.62. (For a nanostructure with a = 0.1 pm, for instance, 
d = 7.14 x IO-* @mZ and then Bo = 0.058 T). In terms of L m o r  radius rc(= hkp/(eB) = 
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(2&)'''Lc), this regime corresponds to 0.39 < rc/a c 6.23, which obviously covers both 
fully chaotic and transitional regions in the case of the Sd billiard [7]. 

Figure I shows the typical wavefunction features in the case of complete transmission. 
In the C1 billiard, [Y I consists of structures with a partially broken circular symmetry (see 
figure ] (a ) ) .  The circularly-symmetric pattem changes regularly as B is varied. In the Sd 
billiard, in contrast, I\vI shows no symmetric patterns (figure l(b)), indicating the aperiodic 
variation of pattems with change of B .  As seen below, this variation yields a rich structure 

Figure 2 displays the conductance g ( B ) .  Both billiard types commonly exhibit very 
noisy fluctuations, reminiscent of the universal conductance fluctuations in dirty metals. 
These anomalous fluctuations, regardless of integrability and non-integrability, are a typical 
feature of weakly opened systems where locations of highly concentrated S-matrix poles in 
the complex k plane are sensitive to the change of B field. Anomalous fluctuations of this 
kind were also reported on periodically-bended quantum wires [13]. 

of g(B) .  

Figure 2. Q u a "  conductance g(B) :  (a)  circle; (b)  stadium. 

By a more careful insight, however, we find a clear difference between the two billiard 
types: in the CI billiard, the frequency of fluctuations of g( B )  remains unchanged throughout 
the B-field range in figure Z(a). This result is consistent with the feature of the underlying 
classical dynamics where the phase space is occupied by ton whose structures are displaced 
regularly with the B field [7]. 

In the Sd billiard, in contrast, g ( B )  exhibits slow and extremely rapid oscillations in the 
low and high field regions, respectively (figure 2(b)). The qualitative feature is in excellent 
agreement with the experiments by Marcus ef d on a right-angled wire geometry [2J. The 
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threshold distinguishing the two distinct oscillations lies around BIB0 = 7.0. This result 
can be understood by exploiting the structural stability of classical phase space. In fact, for 
B c 7B0, r, > 1.53~ and orbits are fully chaotic [7]. As a result the phase space is globally 
occupied by the ergodic sea whose feature is insensitive to the variation of B,  consistent 
with the insensitivity of quantum transport. On the other hand, for B > 7B0,  the ergodic 
part begins, successively, to be replaced by KAM tori and thereby the phase space shows 
extreme sensitivity to the variation of B,  which explains the rapid variation of g ( B ) .  

To characterize the fluctuation of g ( B ) ,  the autocorrelation functions r ( A B )  = 
(Gg(B)Sg(B+ A B ) ) , / ( ( & g ( B ) ) * ) B  have been computed for both the low and high reference 
fields (figure 3). (o * ) a  means the average over the referenced B fields. Both CI and 
Sd billiards are commonly accompanied by cusp-like central peaks common to generic 
systems [ 141. While for the CI billiard (see figure 3(a)) the gradients of the cusps are the 
same in both of the low and high field regions, for the Sd billiard (see figure 3(b)) an 
obvious difference exists between the gradients in low and high reference fields: a long- 
range correlation and a rapid decrease of the correlation are obvious in the low field and 
high field regions, respectively. 

0 
AB~B,, AB/B, 

Figure 3. Autocorrelation functions r ( A B ) .  Reference ranges are 0 < B/Bo < 7 (solid line) 
and I < B / B o  (broken line): ( a )  circle: ( b )  siadium. 

In order to see the quantum-classical correspondence, we shall calculate the classical 
conductance g,l(B): in accordance with the transverse component of the incident 
propagating mode in (2 )  and (3). an electron is supposed to lie initially at hole 1 with 
the occupation probability 1 @ 1 ( ~ ) 1 ~ .  We then compute its rate of escape to the wire 2 
after significant classical bouncings with the wall and finally obtain g&) in figure 4. 
For comparison. we also construct a smoothed version gq(B) by coarse-graining of g ( B ) .  
(Smoothing is done here by averaging g ( B )  over each interval of ABIBo = 0.1. with 
successive intervals chosen by shifting the preceding one by ABIBo = 0.001.) g,,(B) 
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clearly shows the periodic (figure 4(a)) and aperiodic (figure 4(b))  alignment of peaks in 
the CI and Sd billiards, respectively. g,l(B) reproduces the gross features of gqt (B) .  In 
particular the locations of peaks in g,, are mostly identical to those of g, l (B)  in both the C1 
and Sd billiards except for the peaks around BIB0 = 5.5 and 8.5 in  figure 4(a). Thus the 
bouncing Larmor-orbit picture recovers the gross features of quantum conductance. 

5 

Figure 4. Coarse-grained quantum conductance fir, (solid line) and classical conductance 
(broken line): ( 0 )  circle; (b)  stadium 

4. Summary and conclusions 

In conclusion, the magneto-conductance g ( B )  in open C1 and Sd billiards is studied. It shows 
fluctuations dependent largely on the stability of phase space in the underlying classical 
dynamics of closed billiards. while in the CI billiard the regular modulation of periodic 
orbits in the phase-space structure gives rise to regular oscillations of g ( B ) ,  in the Sd billiard 
the global chaos and genesis of successive ton are responsible for slow and rapid variations 
of the quantum conductance, respectively. The gradient of the cusp-like central peaks in the 
autocorrelation function characterizes the rich fluctuation properties of g ( B ) .  The present 
results are consistent with Marcus et 01 ' s  experiment on a different wire geometry. Further, 
using the bouncing b o t - o r b i t  picture, we have derived the classical conductance, which 
tums out to reproduce most of the locations of peaks in the coarse-grained version of g(B) .  
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